

ESTIMATION OF GENETIC DIVERSITY FOR ANAEROBIC GERMINATION TRAITS USING PRINCIPAL COMPONENT ANALYSIS IN RICE (*Oryza sativa* L.)

K. SUDEEPTHI¹, T. SRINIVAS², B.N.V.S.R RAVI KUMAR³, JYOTHULA D.P.B⁴ AND S. K. NAFEEZ UMAR⁵

^{1,2} Department of Genetics and Plant Breeding, ⁵Department of Statistics and Computer Application,

Agricultural College, Bapatla- 522101, Andhra Pradesh, INDIA

ABSTRACT

³ Department of Genetics and Plant Breeding, Regional Agricultural Research Station (RARS),

Maruteru- 534122, Andhra Pradesh, INDIA

⁴Department of Genetics and Plant Breeding, Administrative office, LAM, Guntur- 522034, Andhra Pradesh, INDIA e-mail: sudeepthisep3@gmail.com

KEYWORDS

Anaerobic Response Index Eigen value Genetic Divergence Principal Component

Received on : 11.09.2019

Accepted on : 23.11.2019

*Corresponding author

INTRODUCTION

Rice production in the recent years is increasingly shifting from transplanting to direct seeding, due to reduction in cost of cultivation and early maturity of the direct sown crop (Pandey and Valesco, 2002). However, poor seedling establishment under direct seeding in standing water has prevented its largescale adoption. It is attributed to the lack of tolerance to anaerobic germination (AG) caused by submergence and is identified as the main limiting factor for popularisation of direct seeding in rice (Yang et al., 2019). However, varietal differences for anaerobic germination were observed by Ismail et al. (2009). Development of rice cultivars tolerant to anaerobic conditions during germination coupled with early seedling vigor was reported to be an important objective under directseeding (Joshi et al., 2013; Miro and Ismail, 2013 and Vijayan et al., 2018). Studies on genetic diversity for anaerobic germination traits are therefore essential for devising effective breeding strategies aimed at the development of rice varieties tolerant to anaerobic conditions during germination for wet direct seeding under puddled conditions. In this context, multivariate analysis tools such as principal component analysis (PCA) and cluster analysis have been reported to be effective for evaluating the phenotypic diversity in addition to identifying genetically distant clusters of genotypes and

anaerobic germination traits. Results revealed two principal components with eigen value > 1. These components contributed for a total variability of 77.662 per cent. Component 1 (PC 1) had contributed maximum (57.897 %) while component 2 (PC 2) had contributed to 19.764 per cent towards the total variability. The characters, namely, germination per cent, shoot length, anaerobic response index and root length explained maximum variance in PC 1. The PCA scores for 107 genotypes were plotted in graph to get two dimensional scatter diagram. The results of 2D scatter diagram revealed maximum diversity between the genotypes number (MTU 1140) and (MTU 1010) and hybridization of these diverse genotypes is therefore predicted to result in transgressive segregants with high yield and tolerance to germination under anaerobic conditions.

Principal component analysis was carried out to assess the diversity among 107 rice genotypes with regards to

selecting important traits contributing to the total variation in the genotypes. These analyses provide information that could help in better selection of parental genotypes with specific traits and in devising breeding strategies for trait improvement. Principal component analysis (PCA) allows natural grouping of the genotypes and is precise indicator of differences among genotypes. The main advantage of using PCA over cluster analysis is that each genotype can be assigned to one group only (Mohammadi, 2002). Principal component analysis is a variable reduction procedure and useful when breeders have obtained data on a number of variables (possibly a large number of variables), and believe that there is some redundancy in those variables (Ray et al., 2014). Principal component analysis (PCA) was used to identify redundancy of the genotypes with similar characters and their elimination (Adams, 1995), while two-way cluster analysis is useful for identification and separation of core subset of genotypes with distinct phenotypic traits. Therefore, Principal component analysis (PCA) and two-way cluster analysis are two important statistical programs that aid in selection of elite genotypes. Previous workers namely (Sharma et al., 2018) and (Barik et al., 2019) also studied the genetic diversity for anaerobic germination traits using Principal component analysis. The present investigation was undertaken in this context to study the nature and magnitude of genetic diversity for anaerobic germination traits using Principal Component analysis towards development of anaerobic germination tolerant varieties.

MATERIALS AND METHODS

The experimental material consisted of 107 rice genotypes collected from Regional Agricultural Research Station (RARS), Maruteru; Agricultural Research Station (ARS), Bapatla; and erstwhile, ARS, Pulla of Andhra Pradesh, India, in addition to germplasm obtained from International Rice Research Institute (IRRI), Philippines (Table 1). Screening of these genotypes for tolerance to anaerobic conditions during germination was undertaken at Regional Agricultural Research Station, Maruteru during Kharif 2017 with pro-tray method detailed by Reddy et al. (2017) in completely randomized design with two replications. The screening was undertaken with three days pre-germinated seeds at pigeon breast stage. The seeds were sown in pro-trays of (35.5×10×4.5cm) at about 1cm soil depth and submerged in tanks by filling water upto 10 cm above the travs. Observations were recorded 14th day of submergence. Data on number of seedlings survived after 14 days of submergence was recorded as germination percentage (%). In addition, shoot length (cm), root length (cm) and seedling dry weight (mg) were recorded for each variety in each replication. Further, seedling vigour index (Kharb et al., 1994) and anaerobic response index (Hsu and Tung, 2015) were estimated as per the standard procedures suggested by earlier workers. Principal component analysis was carried according to procedure described by Banfield (1978) and detailed by Gomez and Gomez (1984). PCA can be performed on two types of data matrices viz., variance-covariance matrix and correlation matrix. With characters of different scale a correlation matrix standardizing the original data set is preferred. If the characters are of same scale, a variance covariance matrix can be used. In the present study, PCA was

Table	1:	Details	of	the	material	studied
iuoic	••	Dettunis	•••	the second	material	Judica

performed on the correlation matrix of traits, thereby removing the effects of scale (Jackson, 1991). A data matrix of 107 rice genotypes over six variables for anaerobic germination tolerance of each genotype was prepared and used for analysis. A covariance matrix derived from the data matrix was converted to correlation matrix.

The eigen value and eigen vector pairs created from data matrix were utilized to identify the principal components. The eigen value and eigen vector pairs created from data matrix were utilized to identify the principal components. Eigen values define the amount of total variation that is displayed on principal components. The proportion of variation accounted for each principal component (PC) is expressed as the eigen value divided by the sum of the eigen values.

Percent variance explained for $PCI = \frac{Eigen value(PCI)}{Sum of eigen values}$

The analysis was carried out using the software WindoStat Version 8.

RESULTS AND DISCUSSION

PCA measures the importance and contribution of each component to the total variance, whereas each coefficient of vector indicates the degree of contribution of every original variable with which each principal component is associated. The higher the coefficients, regardless of the direction (positive or negative), the more effective they will be in discriminating between the genotypes (Yumnam et al., 2015). The results on analysis of variance (ANOVA) for anaerobic germination traits revealed highly significant differences among the genotypes for all the characters studied, indicating the exsistence of sufficient variation among the genotypes and therefore opportunity for plant breeder to undertake further breeding activities like hybridization program. In the present study, first three principal components contributed to 88.335% towards the total variability (Table 2). The first principal component (PC 1) contributed 57.897 per cent towards total variability.

	Details of the material studied	
S.No.	Centre of Collection	Genotypes
1	Maruteru, Andhra Pradesh, India	MTU 1001, MTU 1006, MTU 1010, MTU 1031, MTU 1032, MTU 1061,
		MTU 1064, MTU 1071, MTU 1075, MTU 1078, MTU 1112, MTU 1121,
		MTU 1140, MTU 1153, MTU 1156, MTU 1166, MTU 1184, MTU 1187,
		MTU 1194, MTU 1210, MTU 1224, MTU 1226, MTU 1229, MTU 2067,
		MTU 2077, MTU 2716, MTU 3626, MTU 4870, MTU 5182, MTU 5249,
		MTU 5293, MTU 7029, RTCNP 1, RTCNP 3, RTCNP 4, RTCNP 5, RTCNP 6,
		RTCNP 7, RTCNP 8, RTCNP 9, RTCNP 10, RTCNP 12, RTCNP 13, RTCNP 14,
		RTCNP 15, RTCNP 17, RTCNP 18, RTCNP 20, RTCNP 21, RTCNP 23, RTCNP 28,
		RTCNP 29, RTCNP 31, RTCNP 33, RTCNP 34, RTCNP 35, RTCNP 36, RTCNP 37,
		RTCNP 38, RTCNP 39, RTCNP 40, RTCNP 41, RTCNP 42, RTCNP 43, RTCNP 44,
		RTCNP 45, RTCNP 46, RTCNP 47, RTCNP 48, RTCNP 49, RTCNP 50, RTCNP52,
		SM-1, SM-2, SM-3, SM-4, SM-6, SM-7, SM-8, SM-9, SM-10, SM-11, SM-13, SM-14,
		SM-15, SM-16, SM-17, SM-18, SM-19, SM-23, SM-24, SM-25, SM-26, SM-27,
		SM-28, SM-29, SM-30, SM-31, SM-3-1
2	Bapatla, Andhra Pradesh, India	BPT 2231, BPT 3291, BPT 5204
3	Pulla, Andhra Pradesh, India	PLA-1100
4	IRRI, Philipines	FL 478, NONA BOKRA, POKKALI

Figure 1: Two dimensional graph showing relative positions of 107 rice genotypes based on PCA scores

Table 2: Eigen values, proportion of the total variance represented by first three principal components, cumulative per cent variance and component loading of different characters in rice for anaerobic germination traits

	PC 1	PC 2	PC 3
Eigen Value (Root)	3.473	1.185	0.64
% Var. Exp.	57.897	19.764	10.673
Cum. Var. Exp.	57.897	77.662	88.335
Germination (%)	0.499	0.171	0.091
Shoot length (cm)	0.484	-0.081	0.189
Root length (cm)	0.437	0.363	0.276
Seedling dry weight (mg)	0.338	-0.351	-0.814
Seedling vigour index	0.048	-0.835	0.464
Anaerobic response index	0.455	-0.1	-0.011

The characters, namely, germination per cent (0.499), shoot length (0.484), anaerobic response index (0.455), root length (0.437) and seedling dry weight (0.338) explained maximum variance and positive loadings in this component. The second principal component (PC 2) contributed to 19.764 per cent of total variance. The characters namely, root length (0.363) and germination per cent (0.171) explained maximum variance and positive loadings in this component. The third principal component was characterized by 10.673 per cent contribution towards the total variability. The characters, namely, seedling vigour index (0.464), root length (0.276) and shoot length (0.189) explained maximum variance in this component. The PCA analysis thus identified the maximum contributing traits towards the existing variability as germination per cent, shoot length, anaerobic response index and root length.

The PCA scores for 107 rice genotypes in the first three principal components were computed and were considered as three axes as X, Y and Z and squared distance of each genotype from these three axes were calculated (Table 3). These three PCA scores for 107 genotypes were plotted in

Table 3: PCA scores for 107 rice genotypes

Geno	Genotype name	PC I	PC II	PC III
type	pointine	X vector	Y vector	Z vector
numbe	r			
1	BPT 5204	20.075	14 521	-10 523
2	BPT 3291	11 697	11 961	-10.78
2	BPT 2221	17.541	12 463	14 102
1		15.947	12.405	12 227
-		19.047	14.125	-12.327
5		10.027	14.125	-10.300
0	MTU 1006	13.295	12.148	-11.98
/	MTU 1010	8.756	10.649	-9.578
8	MTU 1031	22.017	14.066	-10./49
9	MTU 1032	16.811	12.369	-13.491
10	MTU 1061	14.38	12.797	-10.944
11	MTU 1064	11.454	11.602	-9.617
12	MTU 1071	21.393	14.358	-10.106
13	MTU 1075	18.511	13.757	-11.349
14	MTU 1078	14.772	11.997	-11.581
15	MTU 1112	12.733	13.535	-9.702
16	MTU 1121	16.906	15.375	-9.233
17	MTU 1140	31.253	10.283	-8.741
18	MTU 1153	15.121	14.877	-9.913
19	MTU 1156	9.798	11.471	-9.417
20	MTU 1166	18.666	13.603	-13.42
21	MTU 1184	12 715	12 974	-9.602
22	MTU 1187	11 245	9 807	-12 521
23	MTU 1194	13 559	12 444	-13 045
24	MTU 1210	15.800	12.777	12 444
25	MTU 1210	14.046	12.233	12.444
25	MTU 1224	17.094	12.917	-12.51
20	101220	17.004	15.510	-11.559
Table 3:	Continue			
Table 3:	GENOTYPE	PC I	PC II	PC III
Table 3: S.NO.	GENOTYPE	PC I X vector	PC II Y vector	PC III Z vector
Table 3: S.NO. 27	GENOTYPE	PC I X vector 21.44	PC II Y vector 13.312	PC III Z vector -13.206
Table 3: S.NO. 27 28	GENOTYPE MTU 1229 MTU 2067	PC I X vector 21.44 15.148	PC II Y vector 13.312 13.202	PC III Z vector -13.206 -10.737
Table 3: S.NO. 27 28 29	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077	PC I X vector 21.44 15.148 14.815	PC II Y vector 13.312 13.202 13.996	PC III Z vector -13.206 -10.737 -9.932
S.NO. 27 28 29 30	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716	PC I X vector 21.44 15.148 14.815 26.81	PC II Y vector 13.312 13.202 13.996 12.619	PC III Z vector -13.206 -10.737 -9.932 -8.946
Zable 3: S.NO. 27 28 29 30 31	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626	PC I X vector 21.44 15.148 14.815 26.81 13.695	PC II Y vector 13.312 13.202 13.996 12.619 12.892	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364
Zable 3: S.NO. 27 28 29 30 31 32	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748
Zable 3: S.NO. 27 28 29 30 31 32 33	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2077 MTU 3626 MTU 4870 MTU 5182	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23
Zable 3: S.NO. 27 28 29 30 31 32 33 34	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 3626 MTU 4870 MTU 5182 MTU 5249	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128
Zable 3: S.NO. 27 28 29 30 31 32 33 34 35	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 3626 MTU 4870 MTU 5182 MTU 5293	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.571	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373
Zable 3: S.NO. 27 28 29 30 31 32 33 34 35 36	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08
Zable 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7 47
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALL	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.587 17.539 11.486 25.728 21.545	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088
S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM1 SM2	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 8 284
S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 2	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.025	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.928	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.706
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 8.055
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 4 SM 6	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.032	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 10.470
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 6 SM 7	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.227	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM6	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.567	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 CH 6	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 12.001	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478
S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 SM 9	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.587 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -10.128 -10.128 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 SM 9 SM 10 OUIDEDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76 9.729	PC II Y vector 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991 11.498	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -10.128 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152 -9.449
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 SM 9 SM 10 SM 11	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76 9.729 21.831	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991 11.498 15.161	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152 -9.449 -10.664
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 SM 9 SM 10 SM 11 SM 13	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76 9.729 21.831 20.262	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991 11.498 15.161 15.633	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152 -9.449 -10.664 -9.792
S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 SM 9 SM 10 SM 11 SM 13 SM 14	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.887 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76 9.729 21.831 20.262 11.812	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991 11.498 15.161 15.633 14.406	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152 -9.449 -10.664 -9.792 -8.587
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Continue GENOTYPE MTU 1229 MTU 2067 MTU 2077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 5249 MTU 5293 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 3 SM 4 SM 6 SM 7 SM8 SM 9 SM 10 SM 11 SM 13 SM 14 SM 15	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.587 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76 9.729 21.831 20.262 11.812 18.395	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991 11.498 15.161 15.633 14.406 15.262	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152 -9.149 -10.664 -9.792 -8.587 -8.943
Table 3: S.NO. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Continue GENOTYPE MTU 2067 MTU 20077 MTU 2716 MTU 3626 MTU 4870 MTU 5182 MTU 5249 MTU 7029 NONABOKRA PLA-1100 POKKALI SM1 SM2 SM 4 SM 6 SM 7 SM8 SM 9 SM 10 SM 11 SM 13 SM 14 SM 15 SM16	PC I X vector 21.44 15.148 14.815 26.81 13.695 13.82 20.917 17.571 17.587 17.539 11.486 25.728 21.545 20.866 27.16 19.035 20.672 18.27 12.499 12.701 12.76 9.729 21.831 20.262 11.812 18.395 19.822	PC II <u>Y vector</u> 13.312 13.202 13.996 12.619 12.892 11.716 14.295 15.033 14.279 15.28 10.181 13.725 15.419 14.794 12.843 14.828 15.454 15.038 14.387 12.597 13.991 11.498 15.161 15.633 14.406 15.262 15.393	PC III Z vector -13.206 -10.737 -9.932 -8.946 -11.364 -11.748 -11.23 -10.128 -11.373 -10.08 -10.55 -7.47 -8.62 -9.088 -8.284 -11.796 -8.055 -10.479 -9.17 -10.478 -9.152 -9.449 -10.664 -9.792 -8.587 -8.943 -11.818

graph to get two dimensional scatter diagram (Fig. 1). A perusal of these results revealed genotype number 17, *i.e.*, MTU 1140, a known anaerobic germination tolerant genotype to be widely diverse from other genotypes studied in the present

Table	3:	Continue
-------	----	----------

S.NO.	GENOTYPE	PC I	PC II	PC III
		X vector	Y vector	Z vector
55	SM 18	14.971	15.09	-9.713
56	SM 19	17.259	15.644	-8.636
57	SM 23	24.212	14.138	-10.469
58	SM 24	21.321	14.789	-11.517
59	SM 25	17.282	16.907	-7.333
60	SM 26	15.919	15.963	-8.595
61	SM 27	17.396	16.384	-7.358
62	SM 28	17.398	14.855	-10.54
63	SM 29	17.149	14.95	-9.473
64	SM 30	19.914	15.372	-11.452
65	SM 31	23.628	14.056	-11.225
66	SM 3-1	13.124	13.963	-9.166
67	RTCNP1	17.127	15.783	-8.574
68	RTCNP 3	21.102	15.084	-9.897
69	RTCNP 4	25.94	12.399	-11.557
70	RTCNP5	21.171	15.917	-11.247
71	RTCNP 6	18.837	14.567	-11.988
72	RTCNP 7	18.297	16.569	-8.22
73	RTCNP 8	17.439	15.927	-7.141
74	RTCNP 9	20.825	15.881	-9.395
75	RTCNP 10	16.086	16.036	-9.645
76	RTCNP 12	15.393	15.971	-7.837
77	RTCNP 13	18.696	13.335	-13.348
78	RTCNP 14	21.12	15.672	-8.1
79	RTCNP 15	21.392	15.13	-9.905
80	RTCNP 17	15.056	15.479	-10.191
81	RTCNP 18	15.326	15.555	-9.947
82	RTCNP 20	15.242	15.632	-8.167

Table 3: Continue..

S.NO.	GENOTYPE	PC I	PC II	PC III
			Y vector	
		X vector		Z vector
83	RTCNP 21	27.111	13.369	-8.155
84	RTCNP 22	12.583	13.667	-9.644
85	RTCNP 23	20.304	15.394	-8.785
86	RTCNP 28	27.845	12.058	-8.924
87	RTCNP 29	23.434	14.9	-8.235
88	RTCNP 31	22.037	13.679	-13.123
89	RTCNP 33	19.618	15.392	-9.396
90	RTCNP 34	19.843	15.904	-8.744
91	RTCNP 35	22.685	14.898	-10.127
92	RTCNP 36	24.146	13.624	-10.942
93	RTCNP 37	22.834	14.773	-10.983
94	RTCNP 38	14.571	15.216	-9.052
95	RTCNP 39	14.838	16.775	-7.667
96	RTCNP 40	20.465	16.168	-8.173
97	RTCNP 41	15.887	16.314	-8.171
98	RTCNP 42	18.138	16.465	-8.452
99	RTCNP 43	17.139	15.765	-10.428
100	RTCNP 44	16.312	17.468	-6.619
101	RTCNP 45	15.493	16.993	-7.497
102	RTCNP 46	17.995	16.054	-9.584
103	RTCNP 47	18.357	16.055	-9.003
104	RTCNP 48	27.211	12.148	-8.604
105	RTCNP 49	20.571	15.213	-9.905
106	RTCNP 50	26.322	12.702	-9.18
107	RTCNP 52	24.124	14.555	-11.377

investigation. The results also revealed the genotypes number 17 (MTU 1140) and 7 (MTU 1010) to be most diverse. MTU 1010 (genotype number 7) is a short duration, mega rice variety with high yield potential (Anila *et al.*, 2018), while MTU 1140 (genotype number 17) is a flood and submergence tolerant

variety also reported to possess tolerance for germination under anaerobic conditions (Girijarani et al., 2014). Hybridization of these diverse genotypes is therefore predicted to result in transgressive segregants with high yield and tolerance to germination under anaerobic conditions for use in the breeding programmes aimed at the development of high yielding varieties coupled with anaerobic germination tolerance for wet direct seeding under puddled conditions.

ACKNOWLEDGMENT

The financial assistance received from University Grants Commission (UGC) Government of India, for the study is gratefully acknowledged.

REFERENCES

Anila, M., Swamy, M.H.K., Kale, R. R. 2018. Breeding lines of the Indian mega-rice variety, MTU 1010, possessing protein kinase OsPSTOL (Pup 1), show better root system architecture and higher yield in soils with low phosphorus. *Molecular Breed.* 38: 147.

Adams M.W. 1995. An estimate of homogeneity in crop plants with special reference to genetic vulnerability in dry season. *Euphytica*. 26: 665-679.

Banfield, C.F. 1978. Principal component analysis for genstat. J. of Static. Computer Simulations. 6: 211-222.

Barik, J., Kumar, V., Lenka, S.K and Panda, D. 2019. Genetic potentiality of lowland indigenous indica rice (*Oryza sativa* L.) landraces to anaerobic germination potential. *Indian J. of Plant Physiology*. 1-13.

Girijarani, M., Satyanarayana, P.V., Suryanarayana, Y., Rao, R.P.V, Neerajakshi, Chamundeswari, N., Ravikumar, B.N.V.S.R, Vishnuvardhan, K.M and Bharathalakshmi, M. 2014. Development of new flood tolerant rice varieties for coastal Andhra Pradesh. Life *Sci. Int. Research J.* 1(1): 143-147.

Gomez, K. A. and Gomez, K.K. 1984. Statistical analysis for agricultural research, Second Edition, John Wiley & Sons, New York.

Hsu, S.K. and Tung, C.W. 2015.Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. *Rice*. 8(1): 1-12.

Ismail, A. M., Ella, E.S., Vergara, G.V and Mackill, D.J. 2009. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (*Oryza sativa*). Annals of Bot.**103**: 197-209.

Joshi, E., Kumar, D., Lal, B., Nepalia, V., Gautam, P and Vyas, A.K. 2013. Management of direct seeded rice for enhanced resource use efficiency. *Plant Knowledge J.* 2(3): 119-134.

Kharb, R.P.S., Lather, B.P.S., Deswal, D.P. 1994. Prediction of field emergence through heritability and genetic advance of vigour parameters. *Seed Sci and Techn.* 22: 461-466.

Miro, B and Ismail, M.A. 2013. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (*Oryza sativa* L.). *Frontiers in Plant Science*. 4(269): 1-18.

Mohammadi SA. 2002. Statistical methods in genetics, 6th International Conference of Statistics, University of Tarbiatmodares, Iran,

Pandey, S. and Velasco, L. 2002. Economics of direct seeding in Asia: patterns of adoption and research priorities. p. 3-8. In:. Pandey, S., Mortimer, M., Wade, L., Lopez, K., Hardy, B (Eds.) Direct seeding: research strategies and opportunities. International Rice Research Institute, Los Banos, Philippines.

Ray, K., Dutta, J., Banerjee, H., Biswas, R., Phonglosa, A and Pari, A. 2014. Identification of principal yield attributing traits of Indian mustard (*Brassica juncea* L.) and cosson) using multivariate analysis. *The Bioscan.* 9(2): 803-809.

Reddy, V.A., Girija Rani, M., Satyanarayana, P.V., Suryanarayana, Y.Chamundeswari, N., Ravikumar, B.N.V.S.R., Ramana, R,P.V and Vishnuvardhan, K.M. 2015. Physiological and molecular response of rice genotypes for different types of flooding. *Current Biotica*. 8(4):345-350.

Sharma, B., Parikh, M., Bhandarkar, S., Nair, S.K and Gaurha, D. 2018. Evaluation of variations in seed vigour characters of traditional aromatic rice (*Oryza sativa* L.) accessions of Chhattisgarh using multivariate technique. *International J. of Chemi. Studies.* **6(5)**: 348-353.

Vijayan, J., Senapati, S., Ray, S., Chakraborty, K., Molla, K. A., Basak, N. 2018. Transcriptomic and physiological studies identify cues for germination stage oxygen deficiency tolerance in rice. Environ. and Experimen. Botany. 147: 15-248.

Yang, J., Li, D.K.S., Luo, L., Liu, Y., Huang, M., Yang, G., Liu, H., Wang, H., Chen, Z and Guo, T. 2019. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics. 20(355): 1-15.

Yumnam, S., Sawarkar, A., Patil, S.G and Senapati, B.K. 2015. Multivariate analysis of recombinant inbred lines (F6) of basmati derivative. *The Ecoscan.* 9(1&2): 289-294.

Jackson, J. E. 1991. A User's Guide to Principal Components. John Wiley and Sons, New York.